
An Empirical Study of Python Library Migration
Using Large Language Models

Mohayeminul Islam
University of Alberta

Canada
mohayemin@ualberta.ca

Ajay Kumar Jha
North Dakota State University

USA
ajay.jha.1@ndsu.edu

May Mahmoud
New York University Abu Dhabi

United Arab Emirates
m.mahmoud@nyu.edu

Ildar Akhmetov
Northeastern University

Canada
i.akhmetov@northeastern.edu

Sarah Nadi
New York University Abu Dhabi

United Arab Emirates
sarah.nadi@nyu.edu

Abstract—Library migration is the process of replacing one
library with another library that provides similar functionality.
Manual library migration is time consuming and error prone, as
it requires developers to understand the APIs of both libraries,
map them, and perform the necessary code transformations.
Large Language Models (LLMs) are shown to be effective at
generating and transforming code as well as finding similar
code, which are necessary upstream tasks for library migration.
Such capabilities suggest that LLMs may be suitable for library
migration. Accordingly, this paper investigates the effectiveness of
LLMs for migration between Python libraries. We evaluate three
LLMs, LLama 3.1, GPT-4o mini, and GPT-4o on PYMIGBENCH,
where we migrate 321 real-world library migrations that include
2,989 migration-related code changes. To measure correctness,
we (1) compare the LLM’s migrated code with the developers’
migrated code in the benchmark and (2) run the unit tests
available in the client repositories. We find that LLama 3.1,
GPT-4o mini, and GPT-4o correctly migrate 89%, 89%, and
94% of the migration-related code changes, respectively. We also
find that 36%, 52% and 64% of the LLama 3.1, GPT-4o mini,
and GPT-4o migrations pass the same tests that passed in the
developer’s migration. To ensure the LLMs are not reciting the
migrations, we also evaluate them on 10 new repositories where
the migration never happened. Overall, our results suggest that
LLMs can be effective in migrating code between libraries, but
we also identify some open challenges.

I. INTRODUCTION

Software libraries are essential for modern software devel-
opment, as they provide reusable code that can significantly
reduce development time and effort. Developers often replace
one library with another in their applications to improve per-
formance, address security vulnerabilities, or even for license
compatibility [1, 2]. This process, known as library migration
[3], is time consuming and error prone [2], as it requires devel-
opers to understand the Application Programming Interfaces
(APIs) of both libraries, find API replacements (API mapping),
and perform various code transformations [4].

There have been previous efforts towards automating library
migration, but fully usable tools for this task are limited. With
the exception of a few attempts [5–7], most of the existing

library migration techniques only focus on finding API map-
pings[4, 8–11], without supporting the code transformation.

Large Language Models (LLMs) have shown that they can
be effective in various software engineering tasks [12–14],
including the necessary upstream tasks for library migration,
such as code generation [15–17], code comprehension [18],
and code transformation [19–21]. While this suggests that
LLMs may be capable of performing library migration, we
still need further empirical evidence to support this claim. Ac-
cordingly, this paper investigates the effectiveness of LLMs for
library migration for a wide range of libraries and applications.

Our investigation focuses on Python, and we use
PYMIGBENCH [22], an existing dataset of 321 real-world
library migrations containing 2,989 migration-related code
changes. The data includes the code before and after the
migration, along with detailed descriptions of the migration-
related code changes including labeling of the types of changes
using an existing taxonomy PYMIGTAX [23].

We use three state-of-the-art LLMs: LLama [24], GPT-4o
mini [25], and GPT-4o [26] to perform the migrations. We
refer to these models as LLama, Mini, and 4o in the rest
of the paper, respectively. We evaluate the correctness of the
migrations in two ways. First, we compare the LLM-migrated
code with the developer-migrated code and report correctness
at two granularity levels: the full migration and the individual
code changes. We use PYMIGTAX [23] to identify which types
of code changes the LLMs can/cannot handle. Second, for
the subset of migrations with available unit tests, we run the
available tests to assess the correctness of the migrated code.

We find that 4o performs the best among the three LLMs,
while also being the most expensive. It correctly migrates
at least one migration-related code change for 94% of the
migrations and fully migrates 57% of the migrations. At the
code change level, 4o correctly migrates 94% of the migration-
related code changes. In the test-based evaluation, 64% of
the migrations done by GPT-4o pass the same set of tests
that passed in the developer’s migration. Mini, the lower
cost alternative of 4o, closely follows 4o in performance and

LLama performs comparatively worst.
Our analysis of the code changes using PYMIGTAX re-

veals that all three LLMs can perform reasonably well on
the majority of the code change types. Specifically, their
performance on higher cardinality code change, i.e., changes
involving multiple APIs, is promising (70%, 79% and 84%
correct). However, all three LLMs struggle with code changes
that require argument transformation, including changes to the
argument value or type. 4o outperforms the other two models
in most of the code change types, especially in function call
and higher cardinality code changes.

The evaluation setup above has the advantage of comparing
to a developer-performed ground truth migration. However, it
uses code that the models may have potentially seen during
training, which poses a risk of reciting the migrated code. To
address this, we conduct an additional experiment on 10 recent
well-tested repositories using migrations that never appeared
in their commit history. Overall, we find that even on unseen
target code, LLama, Mini, and 4o perfectly migrate 10%, 40%,
and 50% of the migrations respectively, which shows similar
relative performance to the previous experiment.

Overall, our study reveals various new opportunities and
challenges of using LLMs for library migration. We find that
all three LLMs have high overall correctness, indicating the
potential to play a critical role in reducing library migra-
tion manual effort. Also, LLMs are capable of transforming
changes that were typically considered difficult, e.g., many-
to-many code changes and changes between APIs having
completely different styles. Challenges include all three LLMs
struggling to handle some unit conversions, doing occasional
unwanted extra changes, and generalizing exceptions. Practi-
tioners can use these insights to decide if they want to use
LLMs for library migration. Tool builders can build library
migration tools around LLMs by addressing the limitations
identified in this study, potentially combining LLMs with
traditional program analysis techniques. The artifact for this
study is available at https://figshare.com/articles/conference
contribution/25459000.

To summarize, our contributions in this paper are as follows:
1) We investigate the effectiveness of three LLMs for library

migration using an existing dataset of 321 real-world
library migrations, PYMIGBENCH.

2) We evaluate migration correctness in two ways: (1) com-
paring it to the developer changes at both migration and
code change levels and (2) using unit tests, which provides
a run-time evaluation of the migrated code.

3) Using PYMIGTAX [23], we identify which types of code
changes the LLMs can/cannot handle.

4) We verify LLMs’ performance on unseen migrations.

II. BACKGROUND AND TERMINOLOGY

A. Library Migration

Library migration is the process of updating a software
project to replace a used library with another one that provides
similar functionality [3]. The source library is the one being

replaced, and the target library is the one that replaces it [3].
One migration instance refers to a commit in a repository
where a migration happened from a specific source library to
a target library [22], denoted using the notation source�target.
For example, the commit b0607a26 in repository openstack-
/ironic is a retrying�tenacity migration.

A migration-related code change, or code change for
brevity, is a minimal replacement of source library APIs with
target library APIs that cannot be meaningfully reduced further
without losing the semantics of the change [22]. A migration
contains one or more code changes. The lines between the
boxes in Figure 2 show code changes. For example, segment
P1 in Figure 2a is replaced by segment D1 in Figure 2b.

We use subscripts pre, dev, and llm to denote data before mi-
gration, after developer’s migration, and after an LLM’s migra-
tion, respectively. For example, codepre, codedev , and codellm
denote three states of a code. Changedev and Changellm denote
code changes by developers and an LLM, respectively.

B. PYMIGBENCH and PYMIGTAX

PYMIGBENCH is a dataset of real-world Python library
migrations [22], mined from version control history. We use
the latest available version, version 2.2.5 [23] in our experi-
ments. The dataset has 321 migrations and 2,989 migration-
related code changes. It includes a detailed description of each
code change, including line numbers and API names, which
facilitates our evaluation.

PYMIGTAX is a taxonomy of migration-related code
changes [23], built using the first version of PYMIGBENCH.
The authors validated its generalizability on additional third-
party data. PYMIGTAX describes a code change based on
three dimensions: (1) Program elements: the types of program
elements involved in the change (e.g., function call and
attribute); (2) Cardinality: how many source APIs are re-
placed with how many target APIs. For example, one-to-many
cardinality means one source API is replaced with multiple
target APIs; one-to-many, many-to-one, and many-to-many
cardinalities are commonly referred to as higher-cardinality;
and (3) Properties: Additional properties to describe the code
change (e.g., element name change when the source and
target APIs have different names.). The code change data in
PYMIGBENCH is annotated with the PYMIGTAX categories.
We use PYMIGTAX categories (shown in Table III) to un-
derstand the types of code changes LLMs can handle. The
PYMIGTAX paper [23] has full category descriptions.

III. EXPERIMENT SETUP

A. Models

We use the latest available versions of the three LLMs at the
time of experiment: Meta LLama 3.1-70B-Instruct, OpenAI
GPT-4o mini-2024-07-18, and OpenAI GPT-4o-2024-08-06.
LLama is free and open source with an input+output limit of
8,192 tokens and is trained up until December 2023 [24, 27].
The OpenAI models are proprietary, have a output token limit
of 16,384 and are trained on data up until October 2023 [28].

2 preprint

https://figshare.com/articles/conference_contribution/25459000
https://figshare.com/articles/conference_contribution/25459000
https://github.com/openstack/ironic/commit/b0607a26
https://github.com/openstack/ironic
https://github.com/openstack/ironic

B. Data Preparation

Two repositories from PYMIGBENCH are no longer public,
preventing us from using 2 migrations. We clone the remaining
repositories containing 319 migrations. For each migration
commit, we use PyDriller [29] to extract the content of each
file that has recorded migration-related code changes, both
before (Filepre) and after the migration (Filedev). We use
Python’s built-in ast.parse function [30] to ensure that both
Filepre and Filedev are syntactically valid code and discard 5
migrations having files with syntax errors. We conduct our
experiments with the remaining 314 migrations containing
2,910 migration-related code changes.

C. Migration

For each file having code changes, we use the LLM prompt
template in Figure 1 to migrate the code. The prompt is
designed to ensure that the LLM performs focused, controlled
migrations while maintaining transparency. By asking the
LLM to explain its changes, we ensure that the LLM justifies
its modifications, which can be useful for a human evaluator
reviewing the migration. The prompt also aims to restrict
the LLM from making unrelated modifications such that we
remain focused on the task of library migration.

Since LLMs are non-deterministic [31], we use a temper-
ature of 0 and run each migration 10 times for each model.
We calculate the difference between the runs to understand
the variability in the generated code. We use git-diff [32] to
compute a diff between each pair of the 10 runs and normalize
the number of different lines by dividing it by the total number
of lines in Filepre. We find that on average, two runs on the
same file are only 6.6%, 4.0% and 4.8% different for LLama,
Mini, and 4o, respectively. Given this low variability and the
high effort involved in manual validation, we randomly select
one run for each model to evaluate the LLMs’ results. Our
artifact contains the LLM’s migrations for all 10 runs.

D. Migration Evaluation

Our goal is to assess the ability of LLMs to migrate
Python code between analogous libraries. However, given that
there may be more than one way to correctly migrate an
API usage [33], the LLM’s migrations might not exactly
match the developer changes in PYMIGBENCH, yet still be
correct. Considering this, we use different strategies to assess
correctness through the following research questions.
RQ1 How similar are the LLM migrations to the bench-

mark migrations? We consider Changedev stored in
PYMIGBENCH as the ground truth. We automatically
check if the LLM was able to correctly perform all
expected changes, while accounting for refactoring and
alternative correct changes through manual review.

RQ2 How many migrations pass unit tests? To evaluate run-
time correctness of the migrated code, we use a second
evaluation strategy where we run any available unit tests.

RQ3 Can LLMs perform migrations they have not seen
before? We evaluate on 10 additional well-tested reposi-
tories that were updated after the models’ training dates,

The following Python code uses library <source-lib>. Migrate this code
to use library <target-lib> instead. In the output, first explain the changes
you made. Then, provide the modified code. Do not make any changes
to the code that are not related to migrating between these two libraries.
Do not refactor. Do not reformat. Do not optimize. Do not change coding
style. Provided code:

Fig. 1: LLM Migration Prompt

using migrations that never happened in their version-
control history. We run the tests to evaluate correctness.

IV. RQ1 HOW SIMILAR ARE THE LLM MIGRATIONS TO
THE BENCHMARK MIGRATIONS?

A. Approach

In this RQ, we assess each LLM’s migration correctness
by comparing its code changes (Changellm) to those made
by developers (Changedev), while manually judging potential
alternative changes. A migration may involve multiple files,
each with multiple migration-related code changes. We evalu-
ate each code change individually, and aggregate the results to
determine the correctness of the migration. We now explain the
process using the example in Figure 2 that shows a migration
from the library requests to aiohttp.

1) Match code changes: The goal of this step is to compare
the code changes the LLM made (Changellm) with the devel-
oper ground truth changes (Changedev), as well as manually
finding alternative correct changes.

a) Auto change matching: We first attempt to automati-
cally match as many changes as possible while ensuring preci-
sion i.e. not falsely marking a Changellm as correct. Therefore,
we consider only exact syntactic matches between Changedev
and Changellm, ignoring formatting differences. We find exact
matches by identifying the AST nodes related to Changedev
in Filedev and then matching them to corresponding nodes in
Filellm. If there are potentially multiple matches, we check
the containing function and use proximity based heuristics
demonstrated below. We ensure that the matched node sets
translate to the same code string using ast.unparse [30].

Consider Changedev D1 in Figure 2 which uses
ClientSession() and get() from aiohttp. In Filellm, these
APIs appear in multiple locations, but only Lines 15, 16, 21,
and 22 are in the same containing function fetch_flights

as Changedev . Based on line number proximity, we identify
two node sets L2 and L4 as potential matches for this
Changedev . By comparing the code strings, we find that L2
exactly matches Changedev . By the end of the auto change
matching step, we get a set of matched pairs of Changedev
and Changellm, a set of unmatched Changedev (uChangedev),
and a set of unmatched Changellm (uChangellm).

b) Manual review: The manual review step focuses on
reviewing uChangedev and uChangellm. We use a three-way
diff viewer to manually compare Filepre, Filedev , and Filellm
for each file with at least one uChangedev or uChangellm. We
use the online API documentation as well as the source code of
the source and target libraries to understand the correct API
usage in the context of the file. For Figure 2, we manually

3 preprint

(a) Code before migration (Filepre) (b) Developer’s migration (Filedev) (c) LLM Migration (Filellm)

Fig. 2: A sample requests�aiohttp migration. The lines between the boxes show matching migration-related code changes.
Ó denotes automatic matching, while denotes manual matching. Dashed lines denote changes that are not recorded in
PYMIGBENCH. The blue check marks denote correct changes, while the orange crosses denote incorrect changes.

find that L4 is a correct alternative to D2, noting that the LLM
omitted the default value (True) of the allow_redirects

argument, unlike the developer. L8 is a correct replacement
of D3, where the LLM performed a refactoring. However, we
find that the LLM used the function get instead of post at
line 33, making L0 an incorrect alternative of D4.

After trying to match all changes in Changedev , we may
find that some Changellm remain unmatched. Our aim is to
categorize these as refactoring (not altering program seman-
tics) or non-refactoring (potentially affecting code behavior).
If a Changellm is refactoring, we remove it from uChangellm,
as it does not impact migration correctness. In the example,
the LLM introduced handling of a ValueError (L3), which
changes the program behavior, so we keep it in uChangellm.
Similarly, swapping variables in L5 is also non-refactoring.

Note that while PYMIGBENCH records all migration-related
code changes, it does not record additional changes indirectly
related to the migration, i.e. lines that do not have a target
library API usage. For example, adding async to function
definitions (L1, L6, and L9) due to async calls introduced by
migration are not recorded. We remove these changes from
uChangellm and mark them as correct. Overall, L3 and L5

stay in uChangellm, while L1, L6, L7, and L9 get removed.
To ensure the quality of the manual review, we have two

authors independently review changes. We first review 194
code changes from one model, and measure the agreement
using Cohen’s Kappa [34], but we do not reach substantial
agreement. Therefore, we discuss and resolve disagreements
and update our coding guideline. We then review another 114
code changes, and achieve a Cohen’s Kappa score of 0.83
(almost perfect) and 0.73 (substantial) [35]. Accordingly, we
proceed with only one reviewer for the remaining changes.

2) Determine migration status: Based on the matching of
Changedev and Changellm, we determine each code change
status as follows (example changes refer to Figure 2).

• Correct change: LLM’s change is correct, either exactly like
the developer (D1–L2), or with an alternative API (D2–L4),
or with same APIs but with some refactoring (D3–L8).

• Incorrect change: The LLM incorrectly implemented the
migration change: Used an incorrect API (e.g., get()

instead of post() in L0), did not attempt to migrate it at
all, or incorrectly removed part of a code.

Based on the individual matched code changes, we now
automatically determine an overall migration’s status:

• Response failure: The LLM did not generate a Filellm for at
least one Filepre (e.g., due to token limit or API timeout).

• Syntax error: The LLM generated a Filellm for all Filepre,
but at least one Filellm has syntax errors.

• Incorrect: The LLM could not correctly migrate any of the
changes marked in PYMIGBENCH. We assign this status
when all Changedev across the migration remain unmatched.

• Partially correct: The LLM correctly migrated only some of
Changedev . We assign this status when there are only some
unmatched Changedev .

• Correct with non-refactoring changes: The LLM correctly
migrated all Changedev but also performed some non-
refactoring changes. We assign this status when there are
no unmatched Changedev in any file, but there are some
remaining unmatched Changellm.

• Correct: The LLM correctly migrated all Changedev for
this migration, without any non-refactoring changes. We
assign this status when there are no unmatched Changedev or
Changellm left in any of the files after the matching process.

4 preprint

TABLE I: Correctness of PYMIGBENCH migrations (RQ1,
migration level)

Number (percentage) of migrations

Status LLama 3.1 GPT-4o mini GPT-4o

At least partially correct
Correct 83 (26%) 154 (49%) 179 (57%)
Correct w/ non-refactorings 28 (8.9%) 53 (17%) 55 (18%)
Partially correct 48 (15%) 84 (27%) 62 (20%)
Subtotal 159 (51%) 291 (93%) 296 (94%)

Fully incorrect
Incorrect 7 (2.2%) 6 (1.9%) 2 (0.6%)
Syntax error 16 (5.1%) 6 (1.9%) 3 (1.0%)
Response failure 132 (42%) 11 (3.5%) 13 (4.1%)
Subtotal 155 (49%) 23 (7.3%) 18 (5.7%)

Total migrations 314 (100%) 314 (100%) 314 (100%)

B. Findings: Migration level correctness

Table I shows the migration level results. We find that 4o
performs the best with 94% of the migrations having at least
one correct code change, closely followed by Mini with 93%.
When considering fully correct migrations, 4o outperforms
Mini considerably, with 57% compared to 49%. LLama has
the lowest performance, with only 26% being fully correct and
51% having at least one correct code change. This is mainly
due to a higher proportion of response failures where LLama
ran into token limits. LLama also produces more syntax errors
compared to the other two models (5.1% vs. 1.9% and 1.0%).

RQ1, Migration Level: All three LLMs were able to perform
correct migrations with 4o performing best: 94% of its
migrations were partially correct and 57% were fully correct.

C. Findings: code change level correctness

We now present the correctness results at the individual code
change level. The 314 migrations we use for our evaluation
contain a total of 2,910 code changes. However, when there
is a response failure or syntax error in the LLM’s migration,
we cannot evaluate the correctness of the corresponding code
changes in that file. Accordingly, in this analysis level, we
exclude 1,999 code changes from LLama, 944 from Mini, and
914 from 4o. This leaves us with 911, 1,966, and 1,996 code
changes to evaluate for the three LLMs, respectively.

1) Overall code change correctness: Table II shows the
overall correctness of the LLMs’ migrations at the code change
level. 4o performs best, with 94% of the code changes being
correct. Interestingly, Mini and LLama both perform equally
well at the code change level, with both having 89% correct
code changes. This is in contrast to the migration level,
where Mini performs better than LLama (49% vs. 26%).
This suggests that while Mini attempted more code changes
compared to LLama, the ones that LLama was able to attempt
without failures or syntax errors were comparatively correct.

2) Code change correctness by category: To understand
if some types of code changes are more difficult to migrate,
Table III shows the distribution of code change correctness
across the different PYMIGTAX categories. The second col-
umn shows how often each PYMIGTAX category appears in

TABLE II: Correctness of PYMIGBENCH migration-related
code changes (RQ1, overall code change level)

Number (percentage) of code changes

Status LLama 3.1 GPT-4o mini GPT-4o

Correct 808 (89%) 1,744 (89%) 1,867 (94%)
Incorrect 103 (11%) 222 (11%) 129 (6.5%)

Evaluated code changes 911 (100%) 1,966 (100%) 1,996 (100%)
Excluded code changes 1,999 944 914

Total code changes 2,910 2,910 2,910

the 2,989 code changes in PYMIGBENCH, which provides per-
spective on the category’s frequency in practice. For example,
1,804 (60%) of all 2,989 code changes involve function calls.
The next three column groups show the performance of each
model. Since each LLM has a different number of evaluated
code changes, we show the number of evaluated code changes
from each category (#Eval) alongside the proportion of these
code changes that are correct (%Cor). For example, the Func-
tion call row under the Program elements group shows that
LLama’s syntactically correct migrations included 518 code
changes that involve function calls, and that 88% of these
code changes were correctly migrated.

a) Program elements: Function calls are the most com-
mon program elements in the PYMIGBENCH (60% fre-
quency). All three LLMs correctly migrate a high proportion
of these changes, with 88%, 87%, and 93% of the function
calls being correctly migrated by the three LLMs. Almost
all migrations in PYMIGBENCH require migrating import
statements, a task that all three LLMs perform well, especially
4o correctly migrates nearly all of them (98%).

Mini slightly outperforms the other models in migrating
decorators (90% vs. 87% and 87%); however, it does worst
in attributes (78% vs. 83% and 89%). 4o performs better
than other models in migrating types, exceptions and function
references, followed by Mini. LLama and Mini both struggle
with migrating function references (33% and 58% correct),
while 4o correctly performs all such code changes. While this
last category shows most discrepancy between the models, this
program element is present in only 0.4% of the code changes,
therefore does not affect the overall performance significantly.

b) Properties: The property no properties indicates that
the source and target APIs are identical, and hence no changes
are required. While 4o correctly leaves almost all of these APIs
unchanged (97%), LLama and Mini incorrectly changed sev-
eral of them, resulting in 84% and 88% correct, respectively.

Element name change is the most common property in
PYMIGBENCH. This indicates that the target APIs commonly
bear different names from the source APIs. All LLMs perform
well in making this change, with LLama, Mini, and 4o
correctly migrating 84%, 85%, and 90% changes, respectively.

All three LLMs performed better or equally well in ar-
gument deletion compared to those with argument addition,
which is expected as adding an argument requires the LLM to
find a suitable replacement, while deleting an argument is a
simpler task. The Argument transformation property indicates

5 preprint

TABLE III: Correctness of code changes across PYMIGTAX
categories (RQ1, code change level by category).

PYMIGTAX
category

Frequency in
PYMIGBENCH

LLama 3.1 GPT-4o mini GPT-4o

#Eval %Cor #Eval %Cor #Eval %Cor

Program elements
Function call 1,804 (60%) 518 88% 1,093 87% 1,092 93%
Import 732 (24%) 276 95% 580 94% 593 98%
Decorator 411 (14%) 197 87% 335 90% 353 87%
Attribute 183 (6.1%) 63 83% 103 78% 103 89%
Type 55 (1.8%) 12 75% 34 85% 34 88%
Exception 29 (1.0%) 17 65% 29 86% 29 93%
Function reference 12 (0.4%) 3 33% 12 58% 12 100%

Properties
No properties 262 (8.8%) 43 84% 150 88% 150 97%
Elmnt name change 1,025 (34%) 398 84% 773 85% 771 90%
Arg addition 578 (19%) 150 85% 244 80% 244 88%
Arg deletion 349 (12%) 175 85% 234 87% 234 89%
Arg transform 317 (11%) 115 77% 201 76% 220 77%
Param addition 127 (4.2%) 110 87% 127 95% 127 90%
Arg name change 112 (3.7%) 20 60% 58 59% 58 84%
Async transform 50 (1.7%) 35 83% 50 90% 50 92%
Output transform 49 (1.6%) 25 88% 49 78% 49 92%

Cardinality
One-to-One 1,552 (52%) 408 86% 877 84% 894 91%
One-to-Zero 297 (10%) 99 99% 290 99% 290 100%
Zero-to-One 198 (6.6%) 34 97% 55 87% 55 89%
Higher Cardinality 210 (7.0%) 94 70% 164 79% 164 84%
One-to-Many 142 (4.8%) 61 69% 103 78% 103 80%
Many-to-One 41 (1.4%) 16 62% 34 82% 34 91%
Many-to-Many 27 (0.9%) 17 82% 27 78% 27 89%

Total 2,989 911 89% 1,966 89% 1,996 94%

that an argument requires various changes, such as changing
the type or value. The three LLMs correctly migrate only
76-77% of the argument transformation changes. We discuss
specific failure instances in section VII.

The property parameter addition to decorated function is
found in migrations from or to the click library [36], where
some decorators require adding a parameter to the decorated
function. All three LLMs perform well in migrating these
changes; interestingly, Mini performs better than 4o (95%
vs. 90%). Mini also performed better than 4o in migrating
decorators, which are common in the click library. These are
the only two categories where 4o does not perform the best.

Argument name change applies when an argument repre-
senting the same semantics has different names in the source
and target APIs. While 4o performs reasonably well in mi-
grating these changes (84%), LLama and Mini fail frequently
with them (only 60% and 59% correct).

c) Cardinality: One-to-One code changes are the most
common in PYMIGBENCH, and all three LLMs perform well
in migrating them. One-to-Zero code changes are the ones
where a source API needs to be removed, but no target needs
to be added. Because it is a simple delete operation, all three
LLMs migrate all or almost all of these changes correctly. Its
counterpart, Zero-to-One code changes, are the ones where a
target needs to be added, but no source needs to be removed.
Interestingly, LLama performs the best in migrating these
changes (97% correct), making this the only category where it

performs better than the other models (87% and 89% correct).
While previous research showed that higher-cardinality code
changes are generally difficult compared to one-to-one code
changes [9, 11, 37, 38], the PYMIGBENCH dataset shows that
higher cardinality changes are frequent with 34% of the library
pairs requiring at least one higher-cardinality code change
[23]. Overall, we find that the LLMs are reasonably successful
at migrating them, with 70%, 79%, and 84% correctness rates.

RQ1, Code Change Level: LLMs correctly migrate a high
proportion of most code changes, with 4o achieving 94%
correct code changes. The models perform reasonably well
in migrating difficult higher-cardinality code changes (4o gets
84% correct), but struggle relatively more with argument
transformation and argument name change.

V. RQ2 HOW MANY MIGRATIONS PASS UNIT TESTS?
A. Approach

We now assess the same LLM PYMIGBENCH migrations
from RQ1 but using the unit tests available in the correspond-
ing repositories. A test-based evaluation that runs the code
ensures that the migration achieves the expected behavior.
Note that we should not expect that an LLM migration
improves the rate of passing tests; a successful migration
means that each test that previously passed on codedev must
still pass on codellm. We now explain our evaluation set up.

1) Preparing the code: We make a copy of the repository
after the developers’ migration (codedev). We then make
another copy of developer’s migration, but replace all Filedev
with Filellm; we refer to this as codellm. The idea is that
codellm is basically the version of codedev where the LLM
did the migration on behalf of the developer.

2) Setting up the virtual environment: To set up a virtual
environment, we need to identify the Python version used in
the client repository. If this information is available in the
setup.py file, we use that version. Otherwise, we resolve
the version based on the migration commit date as follows.
We first identify the release dates of all minor versions of
Python (3.6, 3.7 etc). Then, we find the latest release date that
is before the migration commit date. This is the latest Python
version that was available at the time of the migration; we use
this version to create the virtual environment. Next, we install
the code dependencies using pyproject.toml, setup.py
and requirements files. In cases where specific dependency
versions are not specified in those files, we look up the version
history of the dependency on PyPI and install the latest version
available at the migration commit date, similar to how we
resolve the Python version. This ensures that the dependencies
are compatible with the code at the time of migration.

3) Running the tests and coverage: Once the virtual envi-
ronment is ready, we run all the unit tests while measuring
coverage in the repository on codedev . If the run has errors,
we read the error log and try to fix the errors, and run the
tests again. We maintain a configuration file where we record
any project-specific configurations or commands we used. We
include this information in our artifact.

6 preprint

TABLE IV: Correctness of 25 PYMIGBENCH migrations
using their available unit tests (RQ2)

Number (percentage) of correct migrations

Status LLama 3.1 GPT-4o mini GPT-4o

Correct 9 (36%) 13 (52%) 16 (64%)
Partially correct 1 (4.0%) 5 (20%) 2 (8.0%)
Incorrect 15 (60%) 7 (28%) 7 (28%)

Evaluated 25 25 25

We find that 218 out of the 314 migrations have at least
one test. Among these, 172 migrations had unresolvable er-
rors. The failures are primarily due to missing dependencies,
specially for older projects. The remaining 46 migrations have
tests that we are able to successfully run on codedev .

However, for the tests to be useful to validate migration,
they must cover the migration-related code changes. Using
the coverage report, we find that only 27 migrations have at
least one test that covers the code changes, and among them,
25 migrations have at least one test that passes on codedev .
We run the entire test suite on codellm for these 25 migrations
for each model using the same randomly selected LLM run
used in RQ1.

4) Determining migration status: We compare the test
results between codedev and codellm and assign the following
statuses to the migrations:
• Correct: All passing tests in codedev also pass in codellm.
• Partially correct: Some of the tests that pass in codedev pass

in codellm, but the others fail or raise run-time errors.
• Incorrect: None of the passing tests in codedev pass in

codellm; they all fail or raise run-time errors.

B. Findings

Table IV shows the results for the 25 migrations. 4o has the
highest percentage of correct migrations, with 64%, followed
by Mini with 52%, and LLama with 36%. Mini has more
partially correct migrations than 4o and LLama, leading it to
have an equal number of incorrect migrations as 4o (28%).
LLama, on the other hand, has a much higher proportion of
incorrect migrations (60%).

RQ2: Out of 25 PYMIGBENCH migrations with unit tests
covering the migration-related code changes, the LLMs cor-
rectly migrated 36%-64%, with 4o being the highest.

VI. RQ3 CAN LLMS PERFORM MIGRATIONS THEY HAVE
NOT SEEN BEFORE?

A. Approach

All the migrations in PYMIGBENCH happened prior to
the known training cutoff date of the three models (Late
2023). Therefore, there is a possibility that the LLMs are
simply reciting the migrated code they have seen before (for
this particular code base). To validate whether LLMs are
able to perform migrations that are not known to them, but
for libraries they are aware of, we run an experiment with

repositories that never contained the target migration and that
are updated after the training cutoff dates. To allow validating
the migration, we choose repositories with high test coverage.

We use SEART [39] to find Python repositories that are
updated on or after January 1, 2024. We only keep repositories
that have a requirements.txt file to allow us to set up the
environment to run tests. We clone the latest version of the
repositories one by one, set up a virtual environment using the
requirements file, and then run tests with coverage. We stop
after we find 10 repositories whose tests pass and achieve at
least 95% statement coverage.

For each repository, we select a library listed in the re-
quirements file and identify an analogous library that provides
similar functionality through an online search. Overall, we
choose 10 unique library pairs, 4 from PYMIGBENCH and 6
external to it. This allows us to evaluate migration of unseen
code, both on library pairs we have seen the models perform
on before, as well as on new pairs. To ensure that the models
have never seen the expected code that uses the target library
in these repositories, we traverse the commit histories of each
repository and confirm that the target library never appeared
in the requirements file. This also removes the possibility that
the LLMs have previously seen an inverse migration from the
target library to the source library in the repository’s history.

Next, we find the code files that use the source library and
thus require migration. For each of the 10 repositories, we
parse each file using the Python AST module to find the files
that import the source library and thus require migration. We
also manually locate the API usages in those files to confirm
that it does not just import the library but also uses it. We then
run the available tests to record their current status and also
manually verify that the API usages of the source libraries
are covered by the tests. Finally, we migrate each of the
identified files using the same prompt template we used before
(Figure 1). We run the tests after the migration and compare
the test results to those before the migration.

Overall, for this experiment, we have a total of 10 mi-
grations in 10 repositories between 10 unique library pairs.
The repositories have between 1 and 5 migration-related files
(median 1) and between 2 to 210 source API usages that
require migration (median 6). The number of tests in the 10
repositories ranges from 7 to 903 (median 83), all passing
before migration with 95% or more statement coverage.

B. Findings

The migrations have between 3 and 1,125 lines modified per
migration (median 36), confirming that the LLMs attempted to
migrate the code rather than returning the same code. Figure 3
shows the percentage of passing tests for each migration. The
dashed lines show the median passing tests for each model.
4o has the highest median passing tests (100%), followed by
Mini (47%). LLama has most of the migrations (70%) fail,
resulting in the median passing tests of 0.0%.

4o has 5 fully correct migrations (i.e., all tests passing after
migration) plus two more migrations having 98% and 99%
tests passing. 4o has only 2 fully incorrect migrations (no tests

7 preprint

0% 20% 40% 60% 80% 100%

 attrs➔dataclasses

cryptography➔pycryptodome

* requests➔httpx

* matplotlib➔plotly

* python-dotenv➔environs

 toml➔tomlkit

* colorama➔rich

* click➔plac

* python-dateutil➔arrow

 flask➔bottle

llama31 mini 4o

% of passed tests after migration

Fig. 3: Correctness of migrations unseen by the LLMs (RQ3).
Asterisks (*) indicate the library pair is not in PYMIGBENCH.

passing after migration). Mini follows 4o with 4 fully correct
migrations, and 4 fully incorrect migrations. LLama has only
1 fully correct migration but has two migrations having 98%
tests passing. Overall, the relative performance of the three
models follow the same trend as RQ1 and RQ2, with 4o being
the best, followed by Mini and then LLama.

We now compare RQ3 results with RQ1 for the 4 library
pairs that also appear in PYMIGBENCH. This helps us un-
derstand whether migrations between these library pairs are
inherently challenging or if the LLMs did better on potentially
familiar code.

attrs�dataclasses and cryptography�pycryptodome mi-
grations illustrate the challenging cases in these four library
pairs. We find that these library pairs show consistent poor
performance across all RQs. In RQ3, the attrs�dataclasses
migration results in complete failure across all three mod-
els. Similarly in RQ1, only 2 out of 12 attempts for this
library pair by the models are fully correct. The cryptogra-
phy�pycryptodome migration completely fails for two models
in RQ3, and only 12 out of 45 such instances are correct in
RQ1.

In contrast, toml�tomlkit and flask�bottle represent two
consistently easier cases, where the LLMs achieve high or
perfect correctness across all RQs. Except for one flask�bottle
migration where the token limit was exceed for LLama in
RQ1, all migrations in these two library pairs are at least
partially correct.

Overall, this suggests that the difficulty of a migration is
primarily determined by the inherent complexity of the library
pairs, not by whether the migration was seen during training.
Specifically, library pairs that were hard for the models in RQ3
were also hard in RQ1 and RQ2, while easier pairs consistently
achieved better results.

RQ3: Out of 10 unseen migrations, the LLMs fully migrated
1-5 migrations, with 4o being the highest. The performance
patterns are consistent with those observed in RQ1.

(a) Before migration

(b) After LLM migration

Fig. 4: LLama correctly migrating many-to-many code change

VII. DISCUSSION

A. Are LLMs Suitable For Library Migration?

1) The Good: We start with the promising side of using
LLMs for library migration. In addition to the high overall
correctness of code changes and migrations in RQ1, we find
that the LLMs can migrate code changes that were traditionally
known as difficult to migrate [40]. We also find that LLMs
can perform migrations on code they have not seen before.
We discuss some examples to demonstrate these strengths.

a) Different API styles: The library argparse [41] pro-
vides API functions for parsing command-line arguments,
while click [36] provides decorators. Despite the completely
different API styles, the three LLMs correctly migrate 94% of
code changes between this library pair.

b) Higher cardinality migrations: As shown in RQ1,
LLama, Mini, and 4o successfully migrated 70%, 79%, and
84% of the higher cardinality code changes, respectively,
which the literature always viewed as complex migrations
[40, 42]. Figure 4 shows an example of a many-to-many
code change in a twitter�tweepy migration done by LLama.
In addition to correctly replacing the functions Twitter

and OAuth with OAuthHandler, set_access_token, and
API with correct arguments, LLama also splits the code into
multiple statements, making the code more readable.

c) Inferring changes outside of the source and target
APIs: In an eventlet�gevent migration, 4o replaced a call
SocketIO() with SocketIO(async_mode=’gevent’).
This is interesting because the SocketIO API is from the
Flask-SocketIO library, which is neither the source nor the
target. The SocketIO function works with several libraries,
eventlet being the default [43]. If 4o did not set the argument
to gevent, the code would break after the migration.

d) Unseen migrations: When using LLMs for library mi-
gration, we do rely on their knowledge of the APIs. However,
we also need to ensure they can apply this knowledge to
unseen code and are not just reciting the target code. The
results of RQ3 suggest that this is indeed the case, giving us
confidence that an LLM-based migration tool can be useful
in practice. RQ3 even demonstrates that LLMs can handle
large migrations they have not seen before. Specifically, the
attrs�dataclasses migration in RQ3 is the largest one, with 5
files and 210 source API usages to migrate, where 4o changed
615 lines of code to perform this migration. Figure 3 shows
that all three LLMs failed all tests for this migration. However,
upon further investigation, we find that 4o was able to migrate
most of the code correctly, but the tests failed because the

8 preprint

original code had a default field defined before a non-default
field in a class, which is not allowed in the target library.
We manually fix this by changing 2 lines of code, resulting
in 53% tests passing. This suggests that, in the worst case,
LLMs can provide a good starting point even for large (unseen)
migrations that may be more challenging.

2) The Bad: We also analyze cases where the LLMs did not
correctly migrate the code and present notable observations.

a) Failing to handle argument transformation: The
wait_fixed argument in @retry() from the library retrying
[44] expects the time in milliseconds, while the target library
tenacity [45] expects it in seconds. Therefore, it requires trans-
formation, for example, from @retry(wait_fixed=2000)

to @retry(wait=wait_fixed(2)). Out of 28 instances of
this change, 4o handled three instances correctly, and the other
two models each handled just one instance correctly. This
suggests that while the LLMs can map parameters, differences
in expected format or units are harder to manage.

b) Replacing exception type: We find cases where the
LLM replaces generic exception types with specific ones.
e.g., Exception with ValueError, which can potentially
fail to catch the same exceptions as the original code. This
occurs in both migration-related and non-migration-related
changes. While using more specific exceptions is considered
good practice [46], it does change the program behavior. Since
modern development tools are often equipped to suggest better
exception handling, it may be safer for a migration tool to
avoid changing existing exception types.

3) The Ugly: We also observe the following problematic
LLM behavior.

a) Extra Changes: LLMs are known for not always
following the instructions provided in the prompt [47]. Despite
our prompt explicitly asking the LLMs to avoid any non-
migration changes, we find cases where an LLM, particu-
larly LLama, completely removes parts of the code that do
not include any source APIs. Silently deleting code can be
dangerous for the overall functionality of the system, and led
to test failures in RQ2 for many cases.

The LLMs also sometimes refactor code that is not related
to the migration. While these improvements can be beneficial,
they are unrelated to the migration task at hand. Future
work could explore the use of an interactive IDE plugin that
confirms the code changes before applying them, potentially
allowing the developer to directly edit the changes. While
less “dangerous”, we also find that the LLMs remove code
comments and docstrings from the source code, even though
the comments remain relevant after migration.

b) Large file handling: We observe that large files pose a
challenge to LLama, given its smaller context size. Addition-
ally, we observe that even the other two models often migrate
an initial part of a large file but then incorrectly state that the
remaining part does not require any changes.

B. Differences in Evaluation Setup

The test-based evaluation in RQ2 uses a subset of RQ1
migrations. Ideally, the same migration in these two RQs

(a) Before migration (b) After Mini’s migration

Fig. 5: Example of parameter shadowing import name.

should yield the same results. However, in practice, we observe
some discrepancies, which we investigate and explain below.

1) Library version compatibility: In RQ1, when we man-
ually match changes, we mark a code change to be correct
based on the documentation of latest version of the library.
Since we do not ask for a specific version in the prompt, we
notice that the LLMs usually pick APIs from the latest version
of the target library, so the LLM’s result and manual evaluation
align. However, in RQ2, we install the versions applicable at
the time of migration (Section V-A). This version discrepency
often led to run-time errors when running tests on the LLM’s
code, resulting in the migration marked as incorrect in RQ2.

2) Function parameter shadowing import name: In Fig-
ure 5, Mini correctly replaces the import ipaddr with import
ipaddress and the API IPNetwork with ip_network;
therefore, in RQ1, we count this as a correct migration.
However, notice that the parameter in the function IP is
named ipaddress, the same as import name, which causes
the parameter to shadow the import name and leads to test
failures. The developer and 4o both handled this by changing
the parameter name (not shown in the Figure), therefore the
tests did not fail for them.

3) Developer doing non-refactoring changes: Recall that in
RQ1, we find cases where the developer makes non-refactoring
changes in the same commit as the migration while the LLM
only does the migration it is expected to do. We count this
as a correct migration in RQ1. However, given the changed
behavior (often reflected in the tests), the tests fail in RQ2.

C. Understanding the cost of LLM-based migration

The 314 migrations we use have a total of 2,584K lines
of code (KLOC) for all 10 runs per models. The cost of
running our experiments was approximately $15 for Mini and
$420 for 4o, which equates to $0.01 and $0.16 per KLOC,
respectively. LLama is free if self-hosted, though we used
a pro subscription of Hugging Face (US$9/month) to avoid
installation overheads. While library migration is an infrequent
task in a project’s lifetime, it requires significant developer
effort when it happens. The cost of a developer’s time can
easily exceed the cost of using an LLM, even 4o, which can
justify the cost of LLM-based tooling.

VIII. RELATED WORK

A. Traditional library migration techniques

The majority of automated techniques for library migration
focus only on identifying API mapping. Some techniques iden-
tify analogous APIs by analyzing diffs in migration commits
using static analysis [4, 8, 9] and machine learning [42].
Other efforts overcome the need for real migrations by using

9 preprint

unsupervised learning [10] and natural language processing
(NLP) of documentation [5]. DeepMig [48] uses a transformer-
based architecture to recommend alternative library and a
migration plan, but does not perform the transformation.

SOAR [5] applies migration to the client code using pro-
gram synthesis guided by unit tests. SOAR is evaluated on two
pairs of deep learning libraries, focusing on the migration of
neural network models. The nature of these APIs allows SOAR
to check the program state after each API call, which is not the
case for most libraries. Additionally, given the limited number
of libraries, their technique relies on the library-specific error
message format to further guide the synthesis process, requir-
ing extensive changes and technique adaptations for running
SOAR on other libraries. In contrast, due to the diversity of
the libraries we evaluate on, we use the unit tests existing
in the repositories to evaluate the correctness of the migrated
code. SOAR supports one-to-many code changes, but only for
a small set of pre-determined APIs. SOAR times out for 20%
of the evaluated migrations, even for small code snippets (the
largest being 183 lines of code). Our evaluation suggests that
LLMs may be able to handle higher-order transformations out
of the box for larger code snippets.

B. LLM-based library migration

Almeida et al. [49] evaluate the performance of ChatGPT
for SQAlchemy 1�SQLAlchemy 2 migrations. Nikolov et al.
[6] describe Google’s experiences in using LLMs for several
internal code transformation tasks, including JUnit 3�JUnit
4 and Joda Time�Java Time migrations. They find that using
LLMs reduced migration time by at least 50% compared to
manual migration. Zhou et al. [7] proposed HaPiM, which
first trains a machine learning model capable of API mapping,
and then uses the API mappings to guide an LLM in code
transformation. Their approach outperforms MigrationMapper
[4] and GPT-3.5 Turbo on the BLEU [50] and CodeBLEU
[51] metrics evaluated on 5 Java library pairs.

The above studies show that LLMs can be effective for
library migration. These studies, however, have several limita-
tions. First, Almeida et al. [49] and Google’s JUnit 3�JUnit 4
migrations [6] explore LLMs capability of migrating from one
version of a library to another, while we focus on migrating
between different libraries. Migrating versions is different
than migrating libraries, because the former can leverage
the evolution or release history of the libraries to identify
API changes. Second, all three evaluations are based on
very limited number of libraries, maximum 5. Google’s Joda
Time�Java Time migrations [6] also provide library specific
instructions. Therefore, there is a lack of generalizability. Our
evaluation, on the other hand, covers 134 Python library pairs
from 34 application domains. HaPiM [7] also requires first
to train a machine learning model to identify API mappings
using a set of existing migrations, which is a limitation noted
in previous studies [5, 10]. Finally, none of the above studies
analyze the types of code changes that can be handled.

IX. THREATS TO VALIDITY

A. Internal validity

Our benchmark-based evaluation in RQ1 relies on
PYMIGBENCH labeled data, which may contain errors. The
PYMIGBENCH authors, however, manually vetted each code
change to ensure correctness. During our manual evaluation,
we only found a couple of incorrectly labeled changes, which
were eventually corrected in PYMIGBENCH.

Our evaluation involves two manual steps: validating cor-
rectness of code changes and labeling a non-migration related
change as refactoring or non-refactoring. Manual activities are
inherently subjective and may contain errors. We minimize
this by having two authors independently perform the manual
activities and resolving disagreements through discussion.

B. Construct validity

In RQ1, we analyze the code change categories based on
Changedev , not on Changellm. The categories can differ if the
LLM produces a different code change than the developer. Cat-
egorizing the LLM changes would require additional manual
effort following the previous work by Islam et al. [23], which
is beyond the scope of this work. That said, our observation
is that the code/API differences in most cases are minor, and
would not yield in a different PYMIGTAX category.

Tests passing may not always guarantee migration correct-
ness (e.g., the tests do not cover certain edge cases). We
mitigate this, to the extent possible, by selecting repositories
with high test coverage in RQ3 and ensuring that the tests
cover the source API usages.

C. External validity

We use three off the shelf LLMs. While using an LLM
specifically tuned for the library migration task could po-
tentially yield better results, the goal of this work is not to
develop a migration tool, but to understand the challenges
and opportunities of using LLMs for library migration. Our
results may be viewed as a lower bound of the performance
of potentially more specialized models.

Our results may not generalize beyond Python. We choose
Python, because it is a popular language, and because we did
not find a dataset that has the same detailed characterization
of migration-related code changes for other languages.

PYMIGBENCH may not be representative of all Python
libraries. However, the dataset contains a diverse set of 134
library pairs from 34 different application domains. On the
other hand, these are all existing libraries where the LLMs are
likely familiar with their APIs and API usage. This familiarity
with APIs and API usage is precisely our hope when using
LLMs for migration. However, being familiar with the APIs
alone does not always guarantee being able to map them
to each other or apply the right transformations on all code
bases, which is why our evaluation is necessary. For newer
libraries, additional information, e.g., API documentation, may
be needed to guide the LLM in the migration process. This
can be an interesting avenue for future work.

10 preprint

REFERENCES REFERENCES

X. CONCLUSION

This paper presented an empirical study of using LLMs for
library migration in Python. Specifically, we use LLama 3.1,
GPT-4o mini, and GPT-4o to migrate 314 migration commits
across 294 client repositories. We compared the LLM changes
to the developer changes recorded in PYMIGBENCH for these
migrations. We find that 4o performs the best, and correctly
migrates 94% of the individual code changes. At the migration
level, it perfectly migrates 57% of the migrations, and 94%
of them have at least one correctly migrated code change.
We also run unit tests for a subset of the migrations, and
find that 64% of the migrations by 4o have the same sets
of tests passing in the developer’s migration and the LLM’s
migration. A much lower cost LLM Mini and the free LLama
also perform relatively well, with both correctly migrating
89% of code changes. We also find that the LLMs can correctly
perform unseen migrations. Overall, our results suggest that
using LLMs for library migration is promising, and we discuss
the opportunities for further work in this area.

REFERENCES

[1] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar,
and Michael Backes. “Keep me updated: An empirical
study of third-party library updatability on android”.
In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. 2017,
pp. 2187–2200.

[2] Raula Gaikovina Kula, Daniel M German, Ali Ouni,
Takashi Ishio, and Katsuro Inoue. “Do developers up-
date their library dependencies?” In: Empirical Software
Engineering 23.1 (2018), pp. 384–417.

[3] Cedric Teyton, Jean-Remy Falleri, and Xavier Blanc.
“Mining library migration graphs”. In: 2012 19th Work-
ing Conference on Reverse Engineering. IEEE. 2012,
pp. 289–298.

[4] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali
Ouni. “On the use of information retrieval to automate
the detection of third-party java library migration at the
method level”. In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). IEEE.
2019, pp. 347–357.

[5] Ansong Ni et al. “Soar: a synthesis approach for
data science api refactoring”. In: 2021 IEEE/ACM
43rd International Conference on Software Engineering
(ICSE). IEEE. 2021, pp. 112–124.

[6] Stoyan Nikolov et al. “How is Google using AI
for internal code migrations?” In: arXiv preprint
arXiv:2501.06972 (2025).

[7] Bingzhe Zhou et al. “Hybrid API migration: A mar-
riage of small API mapping models and large language
models”. In: Proceedings of the 14th Asia-Pacific Sym-
posium on Internetware. 2023, pp. 12–21.

[8] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc.
“Automatic discovery of function mappings between
similar libraries”. In: 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE. 2013, pp. 192–
201.

[9] Hussein Alrubaye and Mohamed Wiem Mkaouer. “Au-
tomating the detection of third-party Java library mi-
gration at the function level.” In: CASCON. 2018,
pp. 60–71.

[10] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent
Ong Long Xiong. “Mining likely analogical apis across
third-party libraries via large-scale unsupervised api
semantics embedding”. In: IEEE Transactions on Soft-
ware Engineering 47.3 (2019), pp. 432–447.

[11] Zejun Zhang, Minxue Pan, Tian Zhang, Xinyu Zhou,
and Xuandong Li. “Deep-diving into documentation
to develop improved java-to-swift api mapping”. In:
Proceedings of the 28th International Conference on
Program Comprehension. 2020, pp. 106–116.

[12] Ipek Ozkaya. “Application of large language models
to software engineering tasks: Opportunities, risks, and
implications”. In: IEEE Software 40.3 (2023), pp. 4–8.

[13] Angela Fan et al. “Large language models for software
engineering: Survey and open problems”. In: arXiv
preprint arXiv:2310.03533 (2023).

[14] Junjie Wang et al. “Software testing with large language
models: Survey, landscape, and vision”. In: IEEE Trans-
actions on Software Engineering (2024).

[15] Nhan Nguyen and Sarah Nadi. “An empirical evaluation
of GitHub copilot’s code suggestions”. In: Proceedings
of the 19th International Conference on Mining Soft-
ware Repositories. 2022, pp. 1–5.

[16] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert
Demirer. “The impact of ai on developer productiv-
ity: Evidence from github copilot”. In: arXiv preprint
arXiv:2302.06590 (2023).

[17] Vijayaraghavan Murali et al. “CodeCompose: A large-
scale industrial deployment of AI-assisted code author-
ing”. In: arXiv preprint arXiv:2305.12050 (2023).

[18] Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. “Using an LLM to
Help With Code Understanding”. In: 2024 IEEE/ACM
46th International Conference on Software Engineering
(ICSE). IEEE Computer Society. 2024, pp. 881–881.

[19] Yuxiang Wei, Chunqiu Steven Xia, and Lingming
Zhang. “Copiloting the copilots: Fusing large language
models with completion engines for automated program
repair”. In: Proceedings of the 31st ACM Joint Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 2023,
pp. 172–184.

[20] Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. “Automated program repair in the era of large
pre-trained language models”. In: 2023 IEEE/ACM
45th International Conference on Software Engineering
(ICSE). IEEE. 2023, pp. 1482–1494.

11 preprint

REFERENCES REFERENCES

[21] Bingzhe Zhou et al. “Hybrid API migration: A mar-
riage of small API mapping models and large language
models”. In: Proceedings of the 14th Asia-Pacific Sym-
posium on Internetware. 2023, pp. 12–21.

[22] Mohayeminul Islam, Ajay Kumar Jha, Sarah Nadi,
and Ildar Akhmetov. “PyMigBench: A Benchmark for
Python Library Migration”. In: 2023 IEEE/ACM 20th
International Conference on Mining Software Reposi-
tories (MSR). IEEE. 2023, pp. 511–515. DOI: 10.1109/
MSR59073.2023.00075.

[23] Mohayeminul Islam, Ajay Kumar Jha, Ildar Akhme-
tov, and Sarah Nadi. “Characterizing Python Library
Migrations”. In: Proceedings of the ACM International
Conference on the Foundations of Software Engineering
(FSE). 2024. DOI: 10.1145/3643731.

[24] Abhimanyu Dubey et al. “The llama 3 herd of models”.
In: arXiv preprint arXiv:2407.21783 (2024).

[25] OpenAI. https://platform.openai.com/docs/models/gpt-
4o-mini.

[26] OpenAI. OpenAI models: GPT-4o.
https://platform.openai.com/docs/models/gpt-4o. 2025.

[27] Meta. Meta Llama. https://llama.meta.com/. 2025.
[28] OpenAI. OpenAI models.

https://platform.openai.com/docs/models. 2024.
[29] Davide Spadini, Maurı́cio Aniche, and Alberto Bac-

chelli. “PyDriller: Python framework for mining soft-
ware repositories”. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering - ESEC/FSE 2018. New York,
New York, USA: ACM Press, 2018, pp. 908–911. ISBN:
9781450355735. DOI: 10.1145/3236024.3264598. URL:
http://dl.acm.org/citation.cfm?doid=3236024.3264598.

[30] Python Software Foundation. ast — Abstract Syntax
Trees. https://docs.python.org/3/library/ast.html. 2024.

[31] Berk Atil et al. LLM Stability: A detailed analysis with
some surprises. 2024. arXiv: 2408 . 04667 [cs.CL].
URL: https://arxiv.org/abs/2408.04667.

[32] The Git Development Community. git-diff. https://git-
scm.com/docs/git-diff. 2024.

[33] Chunyang Chen. “Similarapi: mining analogical apis for
library migration”. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing: Companion Proceedings. 2020, pp. 37–40.

[34] Jacob Cohen. “A coefficient of agreement for nominal
scales”. In: Educational and psychological measure-
ment 20.1 (1960), pp. 37–46.

[35] J Richard Landis and Gary G Koch. “The measurement
of observer agreement for categorical data”. In: biomet-
rics (1977), pp. 159–174.

[36] Pallets. click. https://pypi.org/project/click. 2024.
[37] Chenglong Wang et al. “Transforming Programs be-

tween APIs with Many-to-Many Mappings”. In: 30th
European Conference on Object-Oriented Programming
(ECOOP 2016). Ed. by Shriram Krishnamurthi and
Benjamin S. Lerner. Vol. 56. Leibniz International

Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2016, 25:1–25:26. ISBN: 978-3-95977-014-9.
DOI: 10 . 4230 / LIPIcs . ECOOP. 2016 . 25. URL: http :
//drops.dagstuhl.de/opus/volltexte/2016/6119.

[38] Zhenfei Huang et al. “Mapping APIs in Dynamic-
typed Programs by Leveraging Transfer Learning”. In:
ACM Trans. Softw. Eng. Methodol. (Jan. 2024). Just
Accepted. ISSN: 1049-331X. DOI: 10 . 1145 / 3641848.
URL: https://doi.org/10.1145/3641848.

[39] O. Dabic, E. Aghajani, and G. Bavota. “Sampling
Projects in GitHub for MSR Studies”. In: 2021 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR) (MSR). Los Alamitos, CA,
USA: IEEE Computer Society, May 2021, pp. 560–564.
DOI: 10 . 1109 / MSR52588 . 2021 . 00074. URL: https :
/ / doi . ieeecomputersociety. org / 10 . 1109 / MSR52588 .
2021.00074.

[40] Shengzhe Xu, Ziqi Dong, and Na Meng. “Meditor:
inference and application of API migration edits”. In:
2019 IEEE/ACM 27th International Conference on Pro-
gram Comprehension (ICPC). IEEE. 2019, pp. 335–
346.

[41] Python Software Foundation. argparse.
https://docs.python.org/3/library/argparse.html. 2024.

[42] Hussein Alrubaye et al. “Learning to recommend third-
party library migration opportunities at the API level”.
In: Applied Soft Computing 90 (2020), p. 106140.

[43] Flask. https://flask-socketio.readthedocs.io/en/latest/api.html.
2024.

[44] Rory Geoghegan. retrying.
https://pypi.org/project/retrying. 2024.

[45] Johann Schmitz. tenacity.
https://pypi.org/project/tenacity. 2024.

[46] Nélio Cacho et al. “How does exception handling
behavior evolve? an exploratory study in java and c#
applications”. In: 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE. 2014,
pp. 31–40.

[47] Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and
Weiqiang Jia. “Cognitive mirage: A review of hallu-
cinations in large language models”. In: arXiv preprint
arXiv:2309.06794 (2023).

[48] Juri Di Rocco et al. “DeepMig: A transformer-based
approach to support coupled library and code migra-
tions”. In: Information and Software Technology 177
(2025), p. 107588.

[49] Aylton Almeida, Laerte Xavier, and Marco Tulio Va-
lente. “Automatic Library Migration Using Large Lan-
guage Models: First Results”. In: Proceedings of the
18th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. 2024, pp. 427–
433.

[50] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. “Bleu: a method for automatic evaluation
of machine translation”. In: Proceedings of the 40th

12 preprint

https://doi.org/10.1109/MSR59073.2023.00075
https://doi.org/10.1109/MSR59073.2023.00075
https://doi.org/10.1145/3643731
https://doi.org/10.1145/3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://arxiv.org/abs/2408.04667
https://arxiv.org/abs/2408.04667
https://doi.org/10.4230/LIPIcs.ECOOP.2016.25
http://drops.dagstuhl.de/opus/volltexte/2016/6119
http://drops.dagstuhl.de/opus/volltexte/2016/6119
https://doi.org/10.1145/3641848
https://doi.org/10.1145/3641848
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00074
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00074
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00074

annual meeting of the Association for Computational
Linguistics. 2002, pp. 311–318.

[51] Shuo Ren et al. “Codebleu: a method for auto-
matic evaluation of code synthesis”. In: arXiv preprint
arXiv:2009.10297 (2020).

13 preprint

	Introduction
	Background and Terminology
	Library Migration
	PyMigBench and PyMigTax

	Experiment Setup
	Models
	Data Preparation
	Migration
	Migration Evaluation

	RQ1 How similar are the LLM migrations to the benchmark migrations?
	Approach
	Match code changes
	Determine migration status

	Findings: Migration level correctness
	Findings: code change level correctness
	Overall code change correctness
	Code change correctness by category

	RQ2 How many migrations pass unit tests?
	Approach
	Preparing the code
	Setting up the virtual environment
	Running the tests and coverage
	Determining migration status

	Findings

	RQ3 Can LLMs perform migrations they have not seen before?
	Approach
	Findings

	Discussion
	Are LLMs Suitable For Library Migration?
	The Good
	The Bad
	The Ugly

	Differences in Evaluation Setup
	Library version compatibility
	Function parameter shadowing import name
	Developer doing non-refactoring changes

	Understanding the cost of LLM-based migration

	Related work
	Traditional library migration techniques
	LLM-based library migration

	Threats to Validity
	Internal validity
	Construct validity
	External validity

	Conclusion

